- Услуги
- Цена и срок
- О компании
- Контакты
- Способы оплаты
- Гарантии
- Отзывы
- Вакансии
- Блог
- Справочник
- Заказать консультацию
Факторный анализ — это процедура установления силы влияния факторов на функцию или результативный признак (полезный эффект машины, элементы совокупных затрат, производительности труда и т.д.) с целью ранжирования факторов для разработки плана организационно-технических мероприятий по улучшению функции.
Применение методов факторного анализа требует большой подготовительной работы и трудоемких по установлению моделей расчетов. Поэтому без ЭВМ не рекомендуется применять методы корреляционного и регрессионного анализа, главных компонентов. К тому же в настоящее время для ЭВМ разных классов имеются стандартные программы по этим методам. В свою очередь, пользоваться установленными с помощью ЭВМ моделями очень просто.
На подготовительной стадии факторного анализа большое внимание следует уделять качеству матрицы исходных данных для ЭВМ. С этой целью сначала рекомендуется на основе логического анализа определять группы факторов, влияющих на исследуемую функцию.
К исходным данным предъявляются следующие требования:
Основные параметры корреляционно-регрессионного анализа в связи с их сложностью не приводятся, поскольку все расчеты предполагается выполнять на ЭВМ по стандартной программе. Конечные результаты расчета выдаются на печать.
Факторный анализ следует проводить в следующей последовательности:
Корреляционные поля построены по исходным статистическим данным Х1—Х4 (факторы) и Y (функция). Анализ корреляционных полей показывает, что:
В матрицу исходных данных следует включать факторы, имеющие примерно такую форму связи, как Y с Х1 и X2 на рис. 7.2. Фактор Х3 с Y не имеет связи, поэтому этот фактор не следует включать в матрицу. Фактор Х4 тоже не следует включать в матрицу, поскольку после линии А—А этот фактор влияния на Y не оказывает. Влияние подобных факторов на Y следует учитывать при помощи коэффициентов, определяемых отдельно для каждого фактора и группы предприятий.
Наши исследования показывают, что к организационным факторам, имеющим с экономическими показателями гиперболическую форму связи, относятся уровень освоенности продукции в установившемся производстве, программа ее выпуска и др.
В экономических исследованиях для многофакторных регрессионных моделей чаще всего приемлемы две формы связи факторов с функцией: линейная и степенная. Для двухфакторных моделей применяются также гиперболическая и параболическая формы связи.
При составлении новых матриц исходных данных из них исключаются поочередно:
Из матрицы могут быть исключены также отдельные строки по предприятиям (периодам), не соответствующие ранее указанным требованиям.
Параметры окончательного уравнения регрессии должны соответствовать требованиям табл. 7.2. Если невозможно этого достигнуть, модель для ранжирования факторов и прогнозирования экономических показателей не может быть использована. Она пригодна только для предварительного отбора факторов.
Ранжирование факторов осуществляется по показателю их эластичности. Фактору с наибольшим коэффициентом эластичности присваивается первый ранг, и он является важнейшим. Например, если два фактора имеют коэффициенты эластичности 0,35 и 0,58, то второму фактору нужно отдать предпочтение перед первым при распределении ресурсов на улучшение данной функции (при улучшении второго фактора на 1% функция улучшается на 0,58%, а по первому фактору — на 0,35%).
Нами проведены специальные исследования зависимостей между элементами затрат и организационными факторами (программа выпуска продукции, уровень ее освоенности, тенденция роста производительности труда). Результаты исследований показали, что эти факторы на экономические показатели влияют только в определенных границах по гиперболической форме связи. Поэтому эти факторы не должны включаться в общую многофакторную модель, их влияние на функцию должно учитываться отдельно. Например, себестоимость продукции прогнозируется по формуле
где 3 — прогнозное значение себестоимости продукции, рассчитанное с учетом организационных факторов производство и технических параметров конструкции;
Зр — прогнозное значение себестоимости продукции, рассчитанное по ее техническим параметром;
Кm — коэффициент, учитывающий влияние на себестоимость изменения программы выпуска нового изделия по сравнению с программой выпуска базового (или группы аналогичных проектируемому) изделия. Для изделий массового выпуска этот коэффициент равен единице;
Косв — коэффициент, учитывающий влияние но себестоимость уровня освоенности конструкции изделия;
Кпрt — коэффициент, учитывающий закономерность неуклонного роста производительности труда. Он определяется по формуле
где ΔП — среднегодовой (за последние пять лет) прирост производительности труда на предприятии (по общему объему продаж);
α — доля фонда заработной платы в себестоимости продукции, доли единицы;
t — интервал времени в годах, разделяющий периоды выпуска базовой и новой продукции.
Анализ применения регрессионных моделей показывает, что в общем случае с повышением коэффициента множественной корреляции улучшаются другие параметры модели. Однако между коэффициентом множественной корреляции и ошибкой аппроксимации не наблюдается устойчивой связи. Покажем это на примере.
Для ранжирования факторов, например, влияющих на годовые затраты на эксплуатацию и ремонты воздушных поршневых компрессоров в условиях ряда машиностроительных предприятий Краснодарского края окончательно были установлены зависимости:
где Y1 — годовые затраты на эксплуатацию и ремонт воздушных поршневых компрессоров в условиях краснодарских машиностроительных заводов, млн.руб.;
Х6 — годовая производительность компрессора, м2;
Х7 — уровень централизации изготовления запасных частей к компрессорам, %;
Х8 — средний разряд рабочих, обслуживающих эти компрессоры;
Х9 — возраст компрессоров на 01,01.1995 г. (по дате их изготовления), лет.
Структура затрат в данном примере: около 60% — энергия и топливо, 25 — заработная плата, 6 — амортизация, 6 — ремонты (без энергии и заработной платы), 3% — вспомогательные материалы.
Для обоих уравнений коэффициенты множественной корреляции равны 0,95. Ошибка аппроксимации для линейной формы связи ±21,4%, а для степенной ±11,5%. Вторая модель почти в два раза точнее первой, хотя коэффициенты корреляции одинаковы. Коэффициенты эластичности факторов по этим уравнениям отличаются незначительно: для линейной формы связи соответственно 0,900; 0,980; 1,630; 0,060, а для степенной — 0,967; 0,817; 1,525 и 0,065.
Между коэффициентами корреляции и эластичности тоже отсутствует устойчивая связь.
Регрессионные модели могут также применяться для установления факторов, влияющих на различные экономические показатели.