- Услуги
- Цена и срок
- О компании
- Контакты
- Способы оплаты
- Гарантии
- Отзывы
- Вакансии
- Блог
- Справочник
- Заказать консультацию
Эта энергия идет на ионизацию атомов и сообщение электронам и ионам поступательного движения от центра взрыва. Так как масса электрона значительно меньше массы атома, то электроны приобретают высокую скорость, а ионы остаются практически на месте.
Эти электроны называют первичными. Их энергии достаточно для дальнейшей ионизации среды, причем каждый первичный (быстрый) электрон образует до 30 000 вторичных (медленных) электронов и положительных ионов.
Из-за огромной разницы в скоростях первичных и вторичных электронов процесс компенсации длится значительно дольше, чем процесс их возникновения. В результате возникают кратковременные электрические и магнитные поля, которые и представляют собой электромагнитный импульс (ЭМИ), что характерно лишь для ядерного взрыва.
Нейтроны в районе взрыва захватываются атомами азота воздуха, создавая при этом гамма-излучение, механизм воздействия которого на окружающий воздух аналогичен первичному гамма-излучению, то есть способствует поддержанию электромагнитных полей и токов.С высотой плотность атмосферного воздуха уменьшается, и в месте взрыва наблюдается асимметрия в распределении электрического заряда. Этому может способствовать и асимметрия потока гамма-квантов, различная толщина оболочки ЯБП и наличие магнитного поля Земли. Вследствие указанных причин электромагнитные поля теряют сферическую симметрию и при наземном ядерном взрыве приобретают вертикальную направленность.
Основными параметрами ЭМИ (рис. 6.3), определяющими его поражающее действие, являются: форма импульса (характер изменения напряженности электрической и магнитной составляющих поля во времени) и амплитуда импульса (максимальная величина напряженности поля).
На рис. 6.3 по оси ординат дано отношение напряженности электрического поля (Е) для наземного взрыва к максимальной напряженности поля в начальный момент взрыва. Это одиночный однополярный импульс с очень крутым передним фронтом (с длительностью в сотые доли микросекунды).
Его спад происходит по экспоненциальному закону, подобно импульсу от молниевого разряда, в течение нескольких десятков миллисекунд. Диапазон частот ЭМИ простирается до 100 МГц, но основная его энергия приходится на частоты 10…15 кГц.Район, где гамма-излучение взаимодействует с атмосферой, называется районом источника ЭМИ. Плотная атмосфера на малых высотах ограничивает эффективное распространение гамма-квантов до сотен метров, то есть при наземном ядерном взрыве площадь этого района занимает несколько квадратных километров.
При высотном ядерном взрыве гамма-кванты проходят сотни километров до полной потери энергии из-за большой разреженности воздуха, то есть район источника ЭМИ значительно больше: диаметр до 1600 км, а глубина до 20 км. Его нижняя граница находится на высоте около 18 км.
Большие размеры района источника ЭМИ при высотном ядерном взрыве приводят к поражению электромагнитным импульсом в местах, где не действуют другие поражающие факторы этого ядерного взрыва. И такие районы могут отстоять от места взрыва на тысячи километров. Показательным примером подобного случая является проведение ядерных испытаний в атмосфере в августе 1958 г.В момент произведенного США термоядерного взрыва за пределами атмосферы над островом Джонстон в 1000 км от эпицентра взрыва, на Гавайях, погасло уличное освещение. Это произошло в результате воздействия ЭМИ на линии электропередач, которые сыграли роль протяженных антенн. Аналогичные явления наблюдались и при ранее проведенных воздушных взрывах, но с такими масштабами воздействия ЭМИ люди встретились впервые, так как впервые был произведен взрыв за пределами атмосферы.
При высотном взрыве той же мощности напряженность поля составляет 1000 кВ/м. Так как время нарастания ЭМИ составляет миллиардные доли секунды, то обычные электронные системы могут не обеспечить защиту работающего в момент действия ЭМИ электронного оборудования, которое получит огромную перегрузку и может выйти из строя.
Поскольку энергия ЭМИ распределена в широком диапазоне частот, то в лучшем положении находится радиоаппаратура, работающая в узком частотном диапазоне. Защитными мероприятиями против ЭМИ являются: соединение аппаратуры подземными кабельными линиями, экранирование проводов вводов и выводов, заземление и экранирование всей аппаратуры. Но полное экранирование постоянно действующей аппаратуры связи выполнить невозможно.Воздействие ЭМИ может привести к выходу из строя электро- и радиотехнических элементов, связанных с антеннами и длинными линиями связи, из-за появления значительных токов (разности потенциалов), которые наводятся и распространяются на десятки и сотни километров от места взрыва, то есть за пределами действия других поражающих факторов.
Если через эти зоны будут проходить линии указанной длины, то наведенные в них токи будут распространяться за пределы указанных зон и выводить из строя аппаратуру, особенно ту, что работает при малых напряжениях (на полупроводниках и интегральных схемах), вызывать короткие замыкания, ионизацию диэлектриков, портить магнитные записи, лишать памяти ЭВМ (табл. 6.4).
По этой же причине могут быть выведены из строя системы оповещения, управления и связи, установленные в убежищах.
Космические объекты могут быть выведены из строя из-за наводок, возникающих в токопроводящих областях корпуса от жесткого из лучения (когда из-за появления потока свободных электронов возникает импульс тока). Напряженность на корпусе космического объекта может достичь 1 млн В/м. Ядерный взрыв мощностью 1 Мт может вывести из строя незащищенный спутник, находящийся в радиусе 25 тыс. км от места взрыва.