- Услуги
- Цена и срок
- О компании
- Контакты
- Способы оплаты
- Гарантии
- Отзывы
- Вакансии
- Блог
- Справочник
- Заказать консультацию
Динамика наилучших ответов может проявлять разнообразные варианты поведения, и мы уже видели несколько примеров, демонстрирующих разные аспекты. Будет полезно сделать шаг назад, оценить наш текущий уровень понимания и задать некоторые основные вопросы. Мы объединим их в две группы.
С учетом этого обстоятельства даже неясно, как обосновать, что динамика наилучших ответов должна завершиться. Почему не может возникнуть цикл, при котором агент t1 улучшает свое решение за счет t2, а затем t2 улучшает свое решение за счет t1, и т. д. до бесконечности?
В самом деле, нетрудно определить другие задачи, в которых возникает именно такая ситуация и в которых равновесия Нэша не существует. Чтобы обосновать, что динамика наилучших ответов ведет к равновесию Нэша в данном случае, необходимо разобраться, что же такого особенного в задаче маршрутизации.
Но если рассматривать происходящее с точки зрения разработчиков протокола, пытаясь определить процедуру построения агентами путей из s, можно пойти по следующему пути: для заданного множества агентов, находящихся в узлах t1, t2, …, tk, можно предложить множество путей (по одному для каждого агента), обладающее двумя свойствами:
Конечно, в идеале нам хотелось бы добиться наименьшей общей стоимости, как при социальном оптимуме. Но если предложить социальный оптимум, который не является равновесием Нэша, он не будет устойчивым: агенты начнут отклоняться и строить новые пути. Таким образом, свойства (i) и (ii) совместно представляют попытку нашего протокола найти оптимум с учетом устойчивости и отыскать лучшее решение, от которого ни один агент не захочет отойти.
По этой причине для заданного экземпляра задачи определяется цена устойчивости как отношение стоимости лучшего решения с равновесием Нэша к стоимости социального оптимума. Эта характеристика отражает рост стоимости, обусловленный требованием о том, что наше решение должно быть устойчивым в контексте личного интереса каждого агента.
Эту пару вопросов можно задать практически для любой задачи, в которой агенты с собственными интересами генерируют коллективное решение. Мы сейчас ответим на оба вопроса для задачи маршрутизации при многоадресной передаче.
Мы покажем, что для любого экземпляра динамика наилучших ответов, начинающаяся с социального оптимума, приводит к равновесию Нэша, стоимость которого увеличивается не более чем с коэффициентом H(k) = Θ(log k).